WORKSHEET – Law of Universal Gravitation

mass of:

	Earth → 5.98 x 10^{24} kg Jupiter → 1.91 x 10^{27} kg Mars → 6.43 x 10^{23} kg Mercury → 3.32 x 10^{23} kg Moon → 7.36 x 10^{22} kg Neptune → 1.03 x 10^{26} kg Saturn → 5.68 x 10^{26} kg Sun → 1.99 x 10^{30} kg Uranus → 8.74 x 10^{25} kg Venus → 4.89 x 10^{24} kg	¹¹ m distance from S	Earth \rightarrow 6.38 x 10 ⁶ m Jupiter \rightarrow 7.14 x 10 ⁷ m Mars \rightarrow 3.40 x 10 ⁶ m Mercury \rightarrow 2.44 x 10 ⁶ m Neptune \rightarrow 2.43 x 10 ⁷ m sun \rightarrow 7.00 x 10 ⁸ m Uranus \rightarrow 2.61 x 10 ⁷ m Venus \rightarrow 6.05 x 10 ⁶ m
	ound = 4.545 newtons	1 meter = 3.28 feet	1 mile = 1609 meters
1)	How much would a 70.0-kg person weigh	າ on Mercury?	
2)	How much would your 20.0-kg dog weigh	າ on Neptune?	
3)	If Pete (mass = 90.0 kg) weighs himself a of the earth is he?	and finds that he weighs 30.	.0 pounds, how far away from the surface
4)	Captain Kirk (80.0 kg) beams down to a particle 1250 N. What is the mass of that planet?		as Uranus and finds that he weighs

radius of:

5)	Which is greater, the force exerted by Saturn on the sun, or the force exerted by the earth on the Sun? How much greater?
6)	A distance of 2.00 mm separates two objects of equal mass. If the gravitational force between them is 0.0104 N, find the mass of each object.
7)	Calculate the gravitational field strength (g) on the surface of Jupiter.
8)	If the gravitational field strength at the top of Mount Everest is 9.772 N/kg, approximately how tall (in feet) is the mountain?
9)	If you dropped a ball while standing on the surface of Mars, at what rate would it accelerate toward the ground?
10)	A space probe lands on the surface of a spherical asteroid 250 miles in diameter and measures the strength o its gravitational field at that point to be 4.95×10^{-11} N/kg. What is the mass of the asteroid?